1. 创建maven项目 在IDEA中添加scala插件 并添加scala的sdk
https://www.gaodi.net/bajiaotai/p/15381309.html
2. 相关依赖jar的引入 配置pom.xml
2.1 pom.xml 示例 (spark版本: 3.0.0 scala版本: 2.12)
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.dxm.sparksql</groupId> <artifactId>sparksql</artifactId> <version>1.0-SNAPSHOT</version> <!-- 指定变量 spark的版本信息 scala的版本信息--> <properties> <spark.version>3.0.0</spark.version> <scala.version>2.12</scala.version> </properties> <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-yarn_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.27</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>1.2.1</version> </dependency> </dependencies> </project>
2.2 spark版本与scala版本对应关系的问题
#根据下面链接 即可查询 spark版本和scala版本的对应关系及依赖配置
https://www.gaodi.net/bajiaotai/p/16270971.html
2.3 在scala代码中查看运行时的scala版本
println(util.Properties.versionString)
2.4 FAQ 因Spark版本和Scala版本不一致导致的报错
待补充
3. 代码测试
object TestSparkSQLEnv extends App { //1.初始化 SparkSession 对象 val spark = SparkSession .builder .master("local") //.appName("SparkSql Entrance Class SparkSession") //.config("spark.some.config.option", "some-value") .getOrCreate() //2.通过 SparkSession 获取 SparkContext private val sc: SparkContext = spark.sparkContext //3.设置日志级别 // Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN // This overrides any user-defined log settings //会覆盖掉 用户设置的日志级别 比如 log4j.properties sc.setLogLevel("ERROR") import spark.implicits._ //4.创建DataFream private val rdd2DfByCaseClass: DataFrame = spark.sparkContext .makeRDD(Array(Person("疫情", "何时"), Person("结束", "呢"))) .toDF("名称", "行动") rdd2DfByCaseClass.show() // +----+----+ // |名称|行动| // +----+----+ // |疫情|何时| // |结束| 呢| // +----+----+ //5.关闭资源 spark.stop() }
4. 结束语
如果能正常执行,恭喜你环境搭建没问题,如果遇到问题请留言共同探讨