Spark读取elasticsearch数据指南

最近要在 Spark job 中通过 Spark SQL 的方式读取 Elasticsearch 数据,踩了一些坑,总结于此。

环境说明

  • Spark job 的编写语言为 Scala,scala-library 的版本为 2.11.8。

  • Spark 相关依赖包的版本为 2.3.2,如 spark-core、spark-sql。

  • Elasticsearch 数据

    schema

    {   "settings": {     "number_of_replicas": 1   },   "mappings": {     "label": {       "properties": {         "docId": {           "type": "keyword"         },         "labels": {           "type": "nested",           "properties": {             "id": {               "type": "long"             },             "label": {               "type": "keyword"             }           }         },         "itemId": {           "type": "long"         }       }     }   } } 

    sample data

    {   "took" : 141,   "timed_out" : false,   "_shards" : {     "total" : 5,     "successful" : 5,     "skipped" : 0,     "failed" : 0   },   "hits" : {     "total" : 17370929,     "max_score" : 1.0,     "hits" : [       {         "_index" : "aen-label-v1",         "_type" : "label",         "_id" : "123_ITEM",         "_score" : 1.0,         "_source" : {           "docId" : "123_ITEM",           "labels" : [             {               "id" : 7378,               "label" : "1kg"             }           ],           "itemId" : 123         }       },       {         "_index" : "aen-label-v1",         "_type" : "label",         "_id" : "456_ITEM",         "_score" : 1.0,         "_source" : {           "docId" : "456_ITEM",           "labels" : [             {               "id" : 7378,               "label" : "2kg"             }           ],           "itemId" : 456         }       }     ]   } } 

准备工作

既然要用 Spark SQL,当然少不了其对应的依赖,

dependencies {   implementation 'org.apache.spark:spark-core_2.11:2.3.2'   implementation 'org.apache.spark:spark-sql_2.11:2.3.2' } 

对于 ES 的相关库,如同 官网 所说,要在 Spark 中访问 ES,需要将 elasticsearch-hadoop 依赖包加入到 Spark job 运行的类路径中,具体而言就是添加到 Spark job 工程的依赖中,公司的 nexus 中当前最新的版本为 7.15.0,且目前我们是使用 gradle 管理依赖,故添加依赖的代码如下,

dependencies {   implementation 'org.elasticsearch:elasticsearch-hadoop:7.15.0' } 

本地测试

对于 Spark,基于资源管理器的不同,可以在两种模式下运行:本地模式和集群模式,可通过 --master 参数来指定资源管理器的方式。本地模式时,不依赖额外的 Spark 集群,Spark 将在同一台机器上运行所有内容,非常方便用于本地测试,对于 Spark SQL,只需要在创建 SparkSession 时采用 local 的模式即可,

class MyUtils extends Serializable {   def esHost() = s"es.sherlockyb.club"      // local mode   def getLocalSparkSession: SparkSession = SparkSession.builder()     .master("local")     .getOrCreate()      // cluster mode   def getSparkSession: SparkSession = SparkSession.builder()     .enableHiveSupport()     .config("spark.sql.broadcastTimeout", "3600")     .getOrCreate() } 

测试代码

object LocalTest extends LazyLogging {   def main(args: Array[String]): Unit = {     new LocalTest().run()   } }  class LocalTest {   def run(): Unit = {     val myUtils = new MyUtils     val spark = myUtils.getLocalSparkSession     import spark.implicits._      var start = System.currentTimeMillis()     val attributeId = 7378L     val labelNames = Array("aen-label-retail", "aen-label-seller")     spark.read       .format("es")       .option("es.nodes", myUtils.esHost())       .option("es.port", "9200")       .option("es.nodes.wan.only", value = true)       .option("es.resource", Joiner.on(",").join(java.util.Arrays.asList(labelNames:_*)) + "/label")       .option("es.scroll.size", 2000)       .load()       .createOrReplaceTempView("temp_labels")          val sqlDf = spark.sql("select itemId, labels from temp_labels where itemId in (123, 456)")     val newDf = sqlDf       .map(row => {         val labels = row.getAs[Seq[Row]]("labels")         val labelValue = labels.find(p => p.getAs[Long]("id") == attributeId).map(p => p.getAs[String]("label"))          (row.getAs[Long]("itemId"), attributeId, labelValue.orNull)       })       .withColumn("final_result", lit("PASS"))       .toDF("itemId", "attributeId", "label", "final_result")      val finalDf = newDf.toDF("itemId", "attributeId", "label", "result")     finalDf.printSchema()     finalDf.show()          var emptyDf = newDf       .filter(col("label").isNotNull)       .toDF("itemId", "attributeId", "label", "result")     emptyDf = emptyDf.union(finalDf)     emptyDf.printSchema()     emptyDf.show()      emptyDf.filter(col("itemId") === 6238081929L and col("label").notEqual(col("result")))       .show()      val attributeTypeIds = Array.fill(3)(100)     val attributeTypeIdsStr = Joiner.on(",").join(java.util.Arrays.asList(attributeTypeIds:_*))     println(attributeTypeIdsStr)       import scala.collection.JavaConverters._     emptyDf = emptyDf.filter(!col("itemId").isin(trainItemIds.asScala.map(Long2long).toList:_*))     emptyDf.show(false)   } } 

知识点

Spark SQL Data Sources

Spark SQL 通过 DataFrameReader 类支持读取各种类型的数据源,比如 Parquet、ORC、JSON、CSV 等格式的文件,Hive table,以及其他 database。而 Elasticsearch 只不过是众多数据源中的一种,DataFrameReader 通过 format(...) 指定数据源格式,通过 option(...) 定制对应数据源下的配置,最后通过 load() 加载生成 DataFrame,也就是 Dataset[Row] 的类型别名。有了 DataFrame,就可以创建一个临时表,然后就能以 SQL 的方式读取数据。

在 Spark 1.5 以前,Elasticsearch 在 format(...) 中对应的 source 名需要是全包名 org.elasticsearch.spark.sql,而在 Spark 1.5 以及之后的版本,source 名称简化为 es

Spark SQL 中 DataFrame 常用 API

  • df.printSchema(),打印 schema
  • df.show(),查看数据列表,默认是 truncate 前 20 条,传 false 时列出全部数据。
  • df.createOrReplaceTempView(“view_name”),构建临时表视图,方便后续 SQL 操作。
  • df.withColumn(),添加新列或替换现有列。
    • df.withColumn(“final_result”, lit(“PASS”)) ,通过 lit 添加常量列。
  • df.filter(col(“label”).isNotNull),用指定的条件过滤行。
  • df.dropDuplicates(“itemId”,”attributeId”),按指定列对行去重,返回新的数据集。
  • df.union(otherDf),将两个 DataFrame 的记录合并且不去重,相当于 union all。
  • df.toDF(“itemId”, “attributeId”, “label”, “final_result”),为 df 各列指定一个有意义的名称。

Scala 与 Java 类型映射

  • scala.Long -> long
  • Array[T] -> T[]

Scala 与 Java 类型转换

import scala.collection.JavaConverters._ newDf = df.filter(!col("itemId").isin(trainItemIds.asScala.map(Long2long).toList:_*)) 

Scala 中的 : _*

:_*type ascription 的一个特例,它会告诉编译器将序列类型的单个参数视为变参数序列,即 varargs。应用例子,

val indices = Array("aen-label", "aen-label-seller") Joiner.on(",").join(java.util.Arrays.asList(indices:_*)) 

踩的坑

es.nodes.wan.only

该配置项表示连接器是否用于 WAN 上的云或受限环境如 AWS 中的 Elasticsearch 实例,默认为 false,而公司的 Elasticsearch 集群是在 AWS 上的,endpoint 只能在内网访问,因而刚开始测试时,遇到如下报错,

Exception in thread "main" org.elasticsearch.hadoop.EsHadoopIllegalArgumentException: No data nodes with HTTP-enabled available  at org.elasticsearch.hadoop.rest.InitializationUtils.filterNonDataNodesIfNeeded(InitializationUtils.java:159)  at org.elasticsearch.hadoop.rest.RestService.findPartitions(RestService.java:223)  at org.elasticsearch.spark.rdd.AbstractEsRDD.esPartitions$lzycompute(AbstractEsRDD.scala:73)  at org.elasticsearch.spark.rdd.AbstractEsRDD.esPartitions(AbstractEsRDD.scala:72)  at org.elasticsearch.spark.rdd.AbstractEsRDD.getPartitions(AbstractEsRDD.scala:44)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)  at scala.Option.getOrElse(Option.scala:121)  at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)  at scala.Option.getOrElse(Option.scala:121)  at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)  at scala.Option.getOrElse(Option.scala:121)  at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)  at scala.Option.getOrElse(Option.scala:121)  at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:46)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:253)  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)  at scala.Option.getOrElse(Option.scala:121)  at org.apache.spark.rdd.RDD.partitions(RDD.scala:251)  at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:340)  at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)  at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)  at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)  at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)  at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)  at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)  at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)  at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)  at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)  at org.apache.spark.sql.Dataset.show(Dataset.scala:723) 

通过 option("es.nodes.wan.only", value = true) 将配置项设置为 true 后恢复正常。

importing spark.implicits._

在遍历 DataFrame 时遇到如下编译错误,

Unable to find encoder for type stored in a Dataset.  Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ 

在处理 DataFrame 之前需要加上 importing spark.implicits._,用于将常见的 Scala 对象转换为 DataFrame,通常在获取 SparkSession 后立马 import。

Spark SQL 读取 hive 表中 array 类型时,对于 Scala 语言,得到的类型是 WrappedArray 而不是 Array

当我们通过 createOrReplaceTempView("temp_labels") 构建一个临时表视图后,就可以通过 SQL 像操作 hive 表那样读取数据。例如读取指定的列,

val sqlDf = spark.sql("select itemId, labels from temp_labels where itemId in (123, 456)") 

通过 sqlDf.printSchema() 可以看到 sqlDf 的 schema 长这样,

root  |-- itemId: long (nullable = true)  |-- labels: array (nullable = true)  |    |-- element: struct (containsNull = true)  |    |    |-- id: long (nullable = true)  |    |    |-- label: string (nullable = true) 

labels 是包含 struct 的数组,于是从 row 中将 labels 列读出时想尝试转换为 Array,

val newDf = sqlDf.map(   row => {     val labels = row.getAs[Array[Row]]("labels")     val labelValue = labels.find(p => p.getAs[Long]("id") == attributeId).map(p => p.getAs[String]("label"))      (row.getAs[Long]("itemId"), attributeId, labelValue.orNull)   } ) 

结果报错如下,

java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [Lorg.apache.spark.sql.Row; 

可以看到 Spark SQL 在读取表中数组列时,是用的 scala.collection.mutable.WrappedArray 来存储结果的,看其类定义可知,它是间接实现 Seq 接口的,所以也可用 row.getAs[Seq[Row]]("labels") 来读取。这里需要注意的是,Array[T] 虽然在 Scala 源码定义中是 class,但其对标的 Java 类型是原生数组 T[]

判断 Column 是否为 null 时,需要用 is nullis not null,而不是 ===!==

对于错误的用法,filter 并不会生效,就像下面这样

newDf.filter(col("label") !== null) 

这一点和 hive 表以及 MySQL 表判断字段是否为 null,是保持一致的,应该像下面这样,

newDf.filter(col("label").isNotNull) 

最终代码

import com.google.common.base.Joiner import com.typesafe.scalalogging.LazyLogging import org.apache.spark.sql.{DataFrame, Row, SaveMode, SparkSession}  object TestMain extends LazyLogging {   def main(args: Array[String]): Unit = {     val myUtils = new MyUtils     new TestApp(myUtils).run()   } }  class TestApp(myUtils: MyUtils) extends Serializable with LazyLogging {     def esDf(spark: SparkSession, indices: Array[String]): DataFrame = {     spark.read       .format("es")       .option("es.nodes", myUtils.esHost())       .option("es.port", "9200")       .option("es.nodes.wan.only", value = true)       .option("es.resource", Joiner.on(",").join(java.util.Arrays.asList(indices:_*)) + "/label")       .option("es.scroll.size", 2000)       .load()   }      def run(): Unit = {     val spark = myUtils.getSparkSession     import spark.implicits._          val esTempView = "es_label"     val labelNames = Array("aen-label-retail", "aen-label-seller")     esDf(spark, labelNames).createOrReplaceTempView(esTempView)          val labelDf = getLabelDf(spark, itemIdsStr, attributeTypeIds, esTempView)     println("debug log")     labelDf.printSchema()     labelDf.show()     labelDf.createOrReplaceTempView("final_labels")          val data = spark.sql(       s"""       |select cc.*, pp.final_result, pp.label, null as remark       |from temp_request cc       |left join final_labels pp       |on cc.itemid = pp.itemId       |and cc.attributetypeid = pp.attributeId       |where cc.profile = '$jobId'       |""".stripMargin)      data.distinct().write.mode(SaveMode.Overwrite)     .option("compression", "gzip")     .json(s"s3://sherlockyb-test/check-precision/job_id=$jobId")   }      def getLabelDf(spark: SparkSession, itemIdsStr: String, attributeTypeIds: Array[String], esTempView: String): DataFrame = {     import spark.implicits._      val sqlDf = spark.sql(s"select itemId, labels from $esTempView where itemId in ($itemIdsStr)")     val emptyDf = spark.emptyDataFrame     var labelDf = emptyDf     attributeTypeIds.foreach(attributeTypeId => {       val attributeDf = sqlDf         .map(row => {           val labels = row.getAs[Seq[Row]]("labels")           val labelValue = labels.find(p => p.getAs[Long]("id") == attributeTypeId.toLong).map(p => p.getAs[String]("label"))            (row.getAs[Long]("itemId"), attributeTypeId.toLong, labelValue.orNull)         })         .withColumn("final_result", lit("PASS"))         .toDF("itemId", "attributeId", "label", "final_result")         .filter(col("label").isNotNull)       if (labelDf == emptyDf) {         labelDf = attributeDf       } else {         labelDf = labelDf.union(attributeDf)       }     })      labelDf.dropDuplicates("itemId","attributeId")   } } 

补充:提交 spark job

将 job 工程打包为 Jar,上传到 AWS 的 s3,比如 s3://sherlockyb-test/1.0.0/artifacts/spark/ 目录下,然后通过 Genie 提交 spark job 到 Spark 集群运行。Genie 是 Netflix 研发的联合作业执行引擎,提供 REST-full API 来运行各种大数据作业,如 Hadoop、Pig、Hive、Spark、Presto、Sqoop 等。

def run_spark(job_name, spark_jar_name, spark_class_name, arg_str, spark_param=''):     import pygenie      pygenie.conf.DEFAULT_GENIE_URL = "genie.sherlockyb.club"      job = pygenie.jobs.GenieJob() /         .genie_username('sherlockyb') /         .job_name(job_name) /         .job_version('0.0.1') /         .metadata(teamId='team_account') /         .metadata(teamCredential='team_password')      job.cluster_tags(['type:yarn-kerberos', 'sched:default'])     job.command_tags(['type:spark-submit-kerberos', 'ver:2.3.2'])     job.command_arguments(         f"--class {spark_class_name} {spark_param} "         f"s3a://sherlockyb-test/1.0.0/artifacts/spark/{spark_jar_name} "         f"{arg_str}"     )      # Submit the job to Genie     running_job = job.execute()     running_job.wait()          return running_job.status 

首发链接: https://www.yangbing.club/2022/06/03/Spark-reading-elasticsearch-guide/
许可协议: 除特殊声明外,本博文均采用 CC BY-NC-SA 3.0 CN 许可协议,转载请注明出处!

商匡云商
Logo
对比商品
  • 合计 (0)
对比
0
购物车