Python数据分析之concat与merge函数(实例详解)

本篇文章给大家带来了关于python的相关知识,其中主要介绍了关于数据合并的相关问题,包括了concat函数与merge函数等内容,下面一起来看一下,希望对大家有帮助。

推荐学习:python视频教程

一、concat函数

  1. concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并
    pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=False, sort=None, copy=True)
  2. 参数含义如下:
参数 作用
axis 表示连接的轴向,可以为0或者1,默认为0
join 表示连接的方式,inner表示内连接,outer表示外连接,默认使用外连接
ignore_index 接收布尔值,默认为False。如果设置为True,则表示清除现有索引并重置索引值
keys 接收序列,表示添加最外层索引
levels 用于构建MultiIndex的特定级别(唯一值)
names 设置了keys和level参数后,用于创建分层级别的名称
verify_integerity 检查新的连接轴是否包含重复项。接收布尔值,当设置为True时,如果有重复的轴将会抛出错误,默认为False
  1. 根据轴方向的不同,可以将堆叠分成横向堆叠纵向堆叠,默认采用的是纵向堆叠方式

这里是引用

  1. 在堆叠数据时,默认采用的是外连接(join参数设为outer)的方式进行合并,当然也可以通过join=inner设置为内连接的方式。

在这里插入图片描述

1)横向堆叠与外连接

import pandas as pd df1=pd.DataFrame({'A':['A0','A1','A2'],                   'B':['B0','B1','B2']})df1

商匡云商
Logo
注册新帐户
对比商品
  • 合计 (0)
对比
0
购物车