PostgreSQL 13支持增量排序(Incremental Sorting)

PostgreSQL 13支持增量排序(Incremental Sorting)

PostgreSQL 13一个重要的功能是支持增量排序,使用order by 时可以加速排序,SQL如下

select * from test order by a,b limit 10;

如果在字段a上面建立了索引,需要对字段a、b进行排序,如果一个结果已经按几个前导键排序,这就允许对附加的b进行批量排序。

enable_incremental_sort

PostgreSQL新增了配置enable_incremental_sort用于控制是否开启增量排序,此参数默认开启

测试准备

在PostgreSQL 13中创建测试表进行测试

postgres=# create table test(id int,c1 int ,c2 int,info varchar(300),crt_time timestamp); CREATE TABLE postgres=# insert into test select t,t,2,'test',clock_timestamp()  from generate_series(1,1000000)t; INSERT 0 1000000 postgres=# create index i_test_id on test(id); CREATE INDEX --查看数据如下 postgres=# select * from test order by id,c1 limit 10;  id | c1 | c2 | info |          crt_time           ----+----+----+------+----------------------------   1 |  1 |  2 | test | 2022-06-02 14:23:38.253289   2 |  2 |  2 | test | 2022-06-02 14:23:38.253777   3 |  3 |  2 | test | 2022-06-02 14:23:38.253785   4 |  4 |  2 | test | 2022-06-02 14:23:38.253787   5 |  5 |  2 | test | 2022-06-02 14:23:38.25379   6 |  6 |  2 | test | 2022-06-02 14:23:38.253791   7 |  7 |  2 | test | 2022-06-02 14:23:38.253793   8 |  8 |  2 | test | 2022-06-02 14:23:38.253795   9 |  9 |  2 | test | 2022-06-02 14:23:38.253809  10 | 10 |  2 | test | 2022-06-02 14:23:38.25381 (10 rows) 

PostgreSQL 13 测试

  • 这里我是在pg14中做的测试,pg13这个参数名叫enable_incrementalsort
postgres=# show enable_incremental_sort;  enable_incremental_sort  -------------------------  on (1 row)  postgres=# explain analyze select * from test order by id,c1 limit 10;                                                                QUERY PLAN                                                                ----------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=0.46..1.16 rows=10 width=25) (actual time=0.159..0.163 rows=10 loops=1)    ->  Incremental Sort  (cost=0.46..70373.03 rows=1000000 width=25) (actual time=0.157..0.159 rows=10 loops=1)          Sort Key: id, c1          Presorted Key: id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 25kB  Peak Memory: 25kB          ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.103..0.106 rows=11 loops=1)  Planning Time: 0.427 ms  Execution Time: 0.265 ms (8 rows)  
  • 可以看到Incremental SortPresorted Key: id并且走了i_test_id索引,SQL耗时0.265ms

关闭enable_incremental_sort

postgres=# set enable_incremental_sort=off; SET postgres=# explain analyze select * from test order by id,c1 limit 10;                                                          QUERY PLAN                                                           -----------------------------------------------------------------------------------------------------------------------------  Limit  (cost=38962.64..38962.67 rows=10 width=25) (actual time=272.945..272.953 rows=10 loops=1)    ->  Sort  (cost=38962.64..41462.64 rows=1000000 width=25) (actual time=272.933..272.937 rows=10 loops=1)          Sort Key: id, c1          Sort Method: top-N heapsort  Memory: 25kB          ->  Seq Scan on test  (cost=0.00..17353.00 rows=1000000 width=25) (actual time=0.028..118.098 rows=1000000 loops=1)  Planning Time: 0.305 ms  Execution Time: 273.023 ms (7 rows) 
  • 关闭增量排序后SQL耗时273.023 ms,性能差了几个数量级

PostgreSQL 12 测试

  • Abase 7.0基于PostgreSQL 12.3

同样使用上面的建表语句,执行SQL如下

postgres=#  explain analyze select * from test order by id,c1 limit 10;                                                           QUERY PLAN                                                           ------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=38962.64..38962.67 rows=10 width=536) (actual time=288.847..288.851 rows=10 loops=1)    ->  Sort  (cost=38962.64..41462.64 rows=1000000 width=536) (actual time=288.839..288.840 rows=10 loops=1)          Sort Key: id, c1          Sort Method: top-N heapsort  Memory: 25kB          ->  Seq Scan on test  (cost=0.00..17353.00 rows=1000000 width=536) (actual time=0.078..173.460 rows=1000000 loops=1)  Planning Time: 24.726 ms  Execution Time: 289.135 ms (7 rows)  

PG 12中执行计划和PG 14关闭enable_incremental_sort参数一样,性能较低

当然这只是一个简单的查询,如果包含where,以及连表等情况是否也可以使用 Incremental Sort

带条件

加上c1 > 100000,c1没有创建索引

postgres=# explain analyze select * from test where c1 > 100000 order by id,c1 limit 10;                                                                QUERY PLAN                                                                 -----------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=0.47..1.23 rows=10 width=25) (actual time=49.470..49.476 rows=10 loops=1)    ->  Incremental Sort  (cost=0.47..68345.40 rows=899386 width=25) (actual time=49.467..49.469 rows=10 loops=1)          Sort Key: id, c1          Presorted Key: id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 25kB  Peak Memory: 25kB          ->  Index Scan using i_test_id on test  (cost=0.42..27873.02 rows=899386 width=25) (actual time=49.383..49.387 rows=11 loops=1)                Filter: (c1 > 100000)                Rows Removed by Filter: 100000  Planning Time: 0.879 ms  Execution Time: 49.594 ms (10 rows)  

加上 id > 100000,id有索引

postgres=# explain analyze select * from test where id > 100000 order by id,c1 limit 10;                                                               QUERY PLAN                                                                ---------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=0.46..1.19 rows=10 width=25) (actual time=0.160..0.164 rows=10 loops=1)    ->  Incremental Sort  (cost=0.46..65542.05 rows=899386 width=25) (actual time=0.148..0.150 rows=10 loops=1)          Sort Key: id, c1          Presorted Key: id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 25kB  Peak Memory: 25kB          ->  Index Scan using i_test_id on test  (cost=0.42..25069.68 rows=899386 width=25) (actual time=0.115..0.119 rows=11 loops=1)                Index Cond: (id > 100000)  Planning Time: 0.408 ms  Execution Time: 0.258 ms (9 rows) 

可以看到即使where条件没有索引,排序字段有索引也可以使用增量排序功能,而且效果也还不错。做了一个过滤操作 Filter: (c1 > 100000)

PG 13 多字段排序

  • 根据id,c1,c2进行排序,一样可以走增量排序
postgres=# explain analyze select * from test  order by id,c1,c2 limit 10;                                                                QUERY PLAN                                                                ----------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=0.46..1.16 rows=10 width=25) (actual time=0.175..0.179 rows=10 loops=1)    ->  Incremental Sort  (cost=0.46..70373.03 rows=1000000 width=25) (actual time=0.172..0.174 rows=10 loops=1)          Sort Key: id, c1, c2          Presorted Key: id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 25kB  Peak Memory: 25kB          ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.126..0.130 rows=11 loops=1)  Planning Time: 0.485 ms  Execution Time: 0.237 ms (8 rows)  

PG 13 join

  • 复制一张test2
postgres=# create table test2 as select * from test; SELECT 1000000  postgres=# create index i_test2_id on test2(id); CREATE INDEX 
  • join连表查询,并且排序字段test.id,test.c1
postgres=# explain analyze select *from test join test2 on test.id = test2.id order by test.id,test.c1 limit 10;                                                                    QUERY PLAN                                                                    ------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=1.93..3.04 rows=10 width=50) (actual time=0.089..0.092 rows=10 loops=1)    ->  Incremental Sort  (cost=1.93..110738.33 rows=1000000 width=50) (actual time=0.087..0.089 rows=10 loops=1)          Sort Key: test.id, test.c1          Presorted Key: test.id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 26kB  Peak Memory: 26kB          ->  Merge Join  (cost=1.85..65738.33 rows=1000000 width=50) (actual time=0.044..0.068 rows=11 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.022..0.036 rows=11 loops=1)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.014..0.018 rows=11 loops=1)  Planning Time: 0.599 ms  Execution Time: 0.174 ms (11 rows)  postgres=# set enable_incremental_sort=off ; SET postgres=# explain analyze select *from test join test2 on test.id = test2.id order by test.id,test.c1 limit 10;                                                                       QUERY PLAN                                                                        -------------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=87347.97..87347.99 rows=10 width=50) (actual time=1964.394..1964.407 rows=10 loops=1)    ->  Sort  (cost=87347.97..89847.97 rows=1000000 width=50) (actual time=1964.391..1964.402 rows=10 loops=1)          Sort Key: test.id, test.c1          Sort Method: top-N heapsort  Memory: 26kB          ->  Merge Join  (cost=1.85..65738.33 rows=1000000 width=50) (actual time=0.070..1690.949 rows=1000000 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.042..571.732 rows=1000000 loops=1)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.017..585.722 rows=1000000 loops=1)  Planning Time: 1.292 ms  Execution Time: 1964.517 ms (10 rows)  

join后排序也可以走增量排序,使用增量排序耗时:0.174 ms,而关闭增量后耗时1964.517 ms

  • 如果join后排序的字段来自不同的表test.id,test2.c1
postgres=# explain analyze select *from test join test2 on test.id = test2.id order by test.id,test2.c1 limit 10;                                                                    QUERY PLAN                                                                    ------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=1.93..3.04 rows=10 width=50) (actual time=0.151..0.155 rows=10 loops=1)    ->  Incremental Sort  (cost=1.93..110738.33 rows=1000000 width=50) (actual time=0.149..0.151 rows=10 loops=1)          Sort Key: test.id, test2.c1          Presorted Key: test.id          Full-sort Groups: 1  Sort Method: quicksort  Average Memory: 26kB  Peak Memory: 26kB          ->  Merge Join  (cost=1.85..65738.33 rows=1000000 width=50) (actual time=0.075..0.088 rows=11 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.040..0.044 rows=11 loops=1)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.025..0.028 rows=11 loops=1)  Planning Time: 0.778 ms  Execution Time: 0.230 ms (11 rows)   postgres=# set enable_incremental_sort=off ; SET postgres=# explain analyze select *from test join test2 on test.id = test2.id order by test.id,test2.c1 limit 10;                                                                       QUERY PLAN                                                                        -------------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=87347.97..87347.99 rows=10 width=50) (actual time=1493.513..1493.519 rows=10 loops=1)    ->  Sort  (cost=87347.97..89847.97 rows=1000000 width=50) (actual time=1493.510..1493.513 rows=10 loops=1)          Sort Key: test.id, test2.c1          Sort Method: top-N heapsort  Memory: 26kB          ->  Merge Join  (cost=1.85..65738.33 rows=1000000 width=50) (actual time=0.065..1228.403 rows=1000000 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.027..318.044 rows=1000000 loops=1)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.027..390.231 rows=1000000 loops=1)  Planning Time: 0.761 ms  Execution Time: 1493.685 ms (10 rows) 

join后排序的字段来自不同的表test.id,test2.c1,也可以走增量排序,开启增量耗时:0.230,关闭后耗时:1493.685 ms

来看看一个比较慢的SQL:

  • 这个SQL两表关联,而且使用了c2=2这一列全部为2,并且使用offset 100000
postgres=# explain analyze select *from test join test2 on test.id = test2.id where test.c2 = 2 order by test.id,test2.c1 limit 10 offset 100000;                                                                      QUERY PLAN                                                                       -----------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=11325.58..11326.72 rows=10 width=50) (actual time=198.125..198.131 rows=10 loops=1)    ->  Incremental Sort  (cost=2.02..113237.64 rows=1000000 width=50) (actual time=0.127..193.661 rows=100010 loops=1)          Sort Key: test.id, test2.c1          Presorted Key: test.id          Full-sort Groups: 3126  Sort Method: quicksort  Average Memory: 29kB  Peak Memory: 29kB          ->  Merge Join  (cost=1.94..68237.64 rows=1000000 width=50) (actual time=0.052..152.908 rows=100011 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..27873.02 rows=1000000 width=25) (actual time=0.026..46.138 rows=100011 loops=1)                      Filter: (c2 = 2)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.020..51.088 rows=100011 loops=1)  Planning Time: 0.707 ms  Execution Time: 198.252 ms (12 rows)  

因为增量排序的缘故,查询还是很快

  • 如果我们关闭增量排序功能
postgres=# explain analyze select *from test join test2 on test.id = test2.id where test.c2 = 2 order by test.id,test2.c1 limit 10 offset 100000;                                                                       QUERY PLAN                                                                        -------------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=156536.56..156536.59 rows=10 width=50) (actual time=2496.085..2496.093 rows=10 loops=1)    ->  Sort  (cost=156286.56..158786.56 rows=1000000 width=50) (actual time=2469.643..2491.429 rows=100010 loops=1)          Sort Key: test.id, test2.c1          Sort Method: external merge  Disk: 72432kB          ->  Merge Join  (cost=1.94..68237.64 rows=1000000 width=50) (actual time=0.082..1371.433 rows=1000000 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..27873.02 rows=1000000 width=25) (actual time=0.040..433.114 rows=1000000 loops=1)                      Filter: (c2 = 2)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.033..401.784 rows=1000000 loops=1)  Planning Time: 0.807 ms  Execution Time: 2530.205 ms (11 rows) 

这个SQL耗时 2530.205 ms,和198.252 ms比增量排序提升还是很明显

但是我们观察到上面的SQL中使用id进行关联,且用id排序的时候查询效率较高,如果排序的字段换成crt_time效果如何?

postgres=# explain analyze select *from test join test2 on test.id = test2.id where test.c2 = 2 order by test.crt_time,test2.c1 limit 10 offset 100000;                                                                       QUERY PLAN                                                                        -------------------------------------------------------------------------------------------------------------------------------------------------------  Limit  (cost=156536.56..156536.59 rows=10 width=50) (actual time=2702.107..2702.133 rows=10 loops=1)    ->  Sort  (cost=156286.56..158786.56 rows=1000000 width=50) (actual time=2667.324..2697.033 rows=100010 loops=1)          Sort Key: test.crt_time, test2.c1          Sort Method: external merge  Disk: 72432kB          ->  Merge Join  (cost=1.94..68237.64 rows=1000000 width=50) (actual time=0.161..1524.794 rows=1000000 loops=1)                Merge Cond: (test.id = test2.id)                ->  Index Scan using i_test_id on test  (cost=0.42..27873.02 rows=1000000 width=25) (actual time=0.074..488.803 rows=1000000 loops=1)                      Filter: (c2 = 2)                ->  Index Scan using i_test2_id on test2  (cost=0.42..25373.02 rows=1000000 width=25) (actual time=0.073..487.688 rows=1000000 loops=1)  Planning Time: 1.835 ms  Execution Time: 2746.486 ms (11 rows)  

当join关联的字段和order by的字段不一样时,虽然order by的字段有索引但也不能走,如果字段一致那么也能利用增量排序。

使用test.crt_time排序和上面关闭增量排序执行计划一样

总结

  • 增量排序对于单表多字段排序来说效率还是提升明显

  • join连表查询如果关联的键和排序键一样也能走增量排序,如果不一样则不能走增量排序

参考资料:

https://postgres.fun/20200721193000.html

新版本调研 · 13 Beta 1 初体验

https://mp.weixin.qq.com/s/mBIL2uzIHB7qVByBIVRmhg

商匡云商
Logo
注册新帐户
对比商品
  • 合计 (0)
对比
0
购物车