k8s client

client-go之Controller&Processor源码分析

1.controller与Processor概述

Controller

Controller从DeltaFIFO中pop Deltas出来处理,根据对象的变化更新Indexer本地缓存,并通知Processor相关对象有变化事件发生。

Processor

Processor根据Controller的通知,即根据对象的变化事件类型,调用相应的ResourceEventHandler来处理对象的变化。

先通过一张informer概要架构图看一下Controller&Processor所处位置与概要功能。

2.Controller初始化与启动分析

2.1 Cotroller初始化-New

New用于初始化Controller,方法比较简单。

// staging/src/k8s.io/client-go/tools/cache/controller.go func New(c *Config) Controller {  ctlr := &controller{   config: *c,   clock:  &clock.RealClock{},  }  return ctlr } 

2.2 Controller启动-controller.Run

controller.Run为controller的启动方法,这里主要看到几个点:
(1)调用NewReflector,初始化Reflector;
(2)调用r.Run,实际上是调用了Reflector的启动方法来启动Reflector(Reflector相关的分析前面的博客已经分析过了,这里不再重复);
(3)调用c.processLoop,开始controller的核心处理;

// staging/src/k8s.io/client-go/tools/cache/controller.go func (c *controller) Run(stopCh <-chan struct{}) {  defer utilruntime.HandleCrash()  go func() {   <-stopCh   c.config.Queue.Close()  }()  r := NewReflector(   c.config.ListerWatcher,   c.config.ObjectType,   c.config.Queue,   c.config.FullResyncPeriod,  )  r.ShouldResync = c.config.ShouldResync  r.clock = c.clock   c.reflectorMutex.Lock()  c.reflector = r  c.reflectorMutex.Unlock()   var wg wait.Group  defer wg.Wait()   wg.StartWithChannel(stopCh, r.Run)   wait.Until(c.processLoop, time.Second, stopCh) } 

3.controller核心处理方法分析

controller.processLoop即为controller的核心处理方法。

controller.processLoop

controller的核心处理方法processLoop中,最重要的逻辑是循环调用c.config.Queue.Pop将DeltaFIFO中的队头元素给pop出来(实际上pop出来的是Deltas,是Delta的切片类型),然后调用c.config.Process方法来做处理,当处理出错时,再调用c.config.Queue.AddIfNotPresent将对象重新加入到DeltaFIFO中去。

func (c *controller) processLoop() {  for {   obj, err := c.config.Queue.Pop(PopProcessFunc(c.config.Process))   if err != nil {    if err == ErrFIFOClosed {     return    }    if c.config.RetryOnError {     // This is the safe way to re-enqueue.     c.config.Queue.AddIfNotPresent(obj)    }   }  } } 

根据前面sharedIndexInformer的初始化与启动分析(sharedIndexInformer.Run)可以得知,c.config.Process即为s.HandleDeltas方法,所以接下来看到s.HandleDeltas方法的分析。

c.config.Process/s.HandleDeltas

根据前面分析知道HandleDeltas要处理的是Deltas,是Delta的切片类型。

再来看到HandleDeltas方法的主要逻辑:
(1)循环遍历Deltas,拿到单个Delta;
(2)判断Delta的类型;
(3)如果是Added、Updated、Sync类型,则从indexer中获取该对象,存在则调用s.indexer.Update来更新indexer中的该对象,随后构造updateNotification struct,并调用s.processor.distribute方法;如果indexer中不存在该对象,则调用s.indexer.Add来往indexer中添加该对象,随后构造addNotification struct,并调用s.processor.distribute方法;
(4)如果是Deleted类型,则调用s.indexer.Delete来将indexer中的该对象删除,随后构造deleteNotification struct,并调用s.processor.distribute方法;

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {  s.blockDeltas.Lock()  defer s.blockDeltas.Unlock()   // from oldest to newest  for _, d := range obj.(Deltas) {   switch d.Type {   case Sync, Added, Updated:    isSync := d.Type == Sync    s.cacheMutationDetector.AddObject(d.Object)    if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {     if err := s.indexer.Update(d.Object); err != nil {      return err     }     s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)    } else {     if err := s.indexer.Add(d.Object); err != nil {      return err     }     s.processor.distribute(addNotification{newObj: d.Object}, isSync)    }   case Deleted:    if err := s.indexer.Delete(d.Object); err != nil {     return err    }    s.processor.distribute(deleteNotification{oldObj: d.Object}, false)   }  }  return nil }  type updateNotification struct {  oldObj interface{}  newObj interface{} }  type addNotification struct {  newObj interface{} }  type deleteNotification struct {  oldObj interface{} } 

至此,Controller的分析就结束了,用一张图来回忆一下Controller的功能与架构。

4.processor核心处理方法分析

sharedIndexInformer.processor.distribute

接下来分析一下前面提到的s.processor.distribute方法。

可以看到distribute方法最终是将构造好的addNotification、updateNotification、deleteNotification对象写入到p.addCh中。

sync类型的对象写入到p.syncingListeners中,但informer中貌似没有启动p.syncingListeners或对p.syncingListeners做处理,所以sync类型的对象变化(也即list操作得到的对象所生成的对象变化)会被忽略?有待验证。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go func (p *sharedProcessor) distribute(obj interface{}, sync bool) {  p.listenersLock.RLock()  defer p.listenersLock.RUnlock()   if sync {   for _, listener := range p.syncingListeners {    listener.add(obj)   }  } else {   for _, listener := range p.listeners {    listener.add(obj)   }  } }  func (p *processorListener) add(notification interface{}) {  p.addCh <- notification } 

sharedIndexInformer.processor.run

s.processor.run启动了processor,其中注意到listener.run与listener.pop两个核心方法。

这里可以看到processor的run方法中只启动了p.listeners,没有启动p.syncingListeners。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go func (p *sharedProcessor) run(stopCh <-chan struct{}) {  func() {   p.listenersLock.RLock()   defer p.listenersLock.RUnlock()   for _, listener := range p.listeners {    p.wg.Start(listener.run)    p.wg.Start(listener.pop)   }   p.listenersStarted = true  }()  <-stopCh  p.listenersLock.RLock()  defer p.listenersLock.RUnlock()  for _, listener := range p.listeners {   close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop  }  p.wg.Wait() // Wait for all .pop() and .run() to stop } 

processorListener.pop

分析processorListener的pop方法可以得知,其逻辑实际上就是将p.addCh中的对象给拿出来,然后丢进了p.nextCh中。那么谁来处理p.nextCh呢?继续往下看。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go func (p *processorListener) pop() {  defer utilruntime.HandleCrash()  defer close(p.nextCh) // Tell .run() to stop   var nextCh chan<- interface{}  var notification interface{}  for {   select {   case nextCh <- notification:    // Notification dispatched    var ok bool    notification, ok = p.pendingNotifications.ReadOne()    if !ok { // Nothing to pop     nextCh = nil // Disable this select case    }   case notificationToAdd, ok := <-p.addCh:    if !ok {     return    }    if notification == nil { // No notification to pop (and pendingNotifications is empty)     // Optimize the case - skip adding to pendingNotifications     notification = notificationToAdd     nextCh = p.nextCh    } else { // There is already a notification waiting to be dispatched     p.pendingNotifications.WriteOne(notificationToAdd)    }   }  } } 

processorListener.run

在processorListener的run方法中,将循环读取p.nextCh,判断对象类型,是updateNotification则调用p.handler.OnUpdate方法,是addNotification则调用p.handler.OnAdd方法,是deleteNotification则调用p.handler.OnDelete方法做处理。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go func (p *processorListener) run() {  // this call blocks until the channel is closed.  When a panic happens during the notification  // we will catch it, **the offending item will be skipped!**, and after a short delay (one second)  // the next notification will be attempted.  This is usually better than the alternative of never  // delivering again.  stopCh := make(chan struct{})  wait.Until(func() {   // this gives us a few quick retries before a long pause and then a few more quick retries   err := wait.ExponentialBackoff(retry.DefaultRetry, func() (bool, error) {    for next := range p.nextCh {     switch notification := next.(type) {     case updateNotification:      p.handler.OnUpdate(notification.oldObj, notification.newObj)     case addNotification:      p.handler.OnAdd(notification.newObj)     case deleteNotification:      p.handler.OnDelete(notification.oldObj)     default:      utilruntime.HandleError(fmt.Errorf("unrecognized notification: %T", next))     }    }    // the only way to get here is if the p.nextCh is empty and closed    return true, nil   })    // the only way to get here is if the p.nextCh is empty and closed   if err == nil {    close(stopCh)   }  }, 1*time.Minute, stopCh) }  

而p.handler.OnUpdate、p.handler.OnAdd、p.handler.OnDelete方法实际上就是自定义的的ResourceEventHandlerFuncs了。

informer.AddEventHandler(cache.ResourceEventHandlerFuncs{     AddFunc:    onAdd,     UpdateFunc: onUpdate,     DeleteFunc: onDelete,   }) 
// staging/src/k8s.io/client-go/tools/cache/controller.go type ResourceEventHandlerFuncs struct {  AddFunc    func(obj interface{})  UpdateFunc func(oldObj, newObj interface{})  DeleteFunc func(obj interface{}) }  func (r ResourceEventHandlerFuncs) OnAdd(obj interface{}) {  if r.AddFunc != nil {   r.AddFunc(obj)  } }  func (r ResourceEventHandlerFuncs) OnUpdate(oldObj, newObj interface{}) {  if r.UpdateFunc != nil {   r.UpdateFunc(oldObj, newObj)  } }  func (r ResourceEventHandlerFuncs) OnDelete(obj interface{}) {  if r.DeleteFunc != nil {   r.DeleteFunc(obj)  } } 

至此,Processor的分析也结束了,用一张图来回忆一下Processor的功能与架构。

总结

Controller

Controller从DeltaFIFO中pop Deltas出来处理,根据对象的变化更新Indexer本地缓存,并通知Processor相关对象有变化事件发生:
(1)如果是Added、Updated、Sync类型,则从indexer中获取该对象,存在则调用s.indexer.Update来更新indexer中的该对象,随后构造updateNotification struct,并通知Processor;如果indexer中不存在该对象,则调用s.indexer.Add来往indexer中添加该对象,随后构造addNotification struct,并通知Processor;
(2)如果是Deleted类型,则调用s.indexer.Delete来将indexer中的该对象删除,随后构造deleteNotification struct,并通知Processor;

Processor

Processor根据Controller的通知,即根据对象的变化事件类型(addNotification、updateNotification、deleteNotification),调用相应的ResourceEventHandler(addFunc、updateFunc、deleteFunc)来处理对象的变化。

informer架构中的Controller&Processor

在对informer中的Controller与Processor分析完之后,接下来将分析informer中的Indexer。

商匡云商
Logo
注册新帐户
对比商品
  • 合计 (0)
对比
0
购物车