解析数仓OLAP函数:ROLLUP、CUBE、GROUPING SETS

摘要:GaussDB(DWS) ROLLUP,CUBE,GROUPING SETS等OLAP函数的原理解析。

本文分享自华为云社区《GaussDB(DWS) OLAP函数浅析》,作者: DWS_Jack_2。

在一些报表场景中,经常会对数据做分组统计(group by),例如对一级部门下辖的二级部门员工数进行统计:

create table emp( id int,     --工号 name text,  --员工名 dep_1 text, --一级部门 dep_2 text  --二级部门 ); gaussdb=# select count(*), dep_2 from emp group by dep_2;  count | dep_2 -------+-------    200 | SRE    100 | EI (2 rows)

常见的统计报表业务中,通常需要进一步计算一级部门的“合计”人数,也就是二级部门各分组的累加,就可以借助于rollup,如下所示,比前面的分组计算结果多了一行合计的数据:

gaussdb=# select count(*), dep_2 from emp group by rollup(dep_2);  count | dep_2 -------+-------    200 | SRE    100 | EI    300 | (3 rows)

如上是一种group by扩展的高级分组函数使用场景,这一类分组函数统称为OLAP函数,在GaussDB(DWS)中支持 ROLLUP,CUBE,GROUPING SETS,下面对这几种OLAP函数的原理和应用场景做一下分析。

首先我们来创建一张表,customer,用户信息表,其中包含了用户id,用户名,年龄,国家,用户级别,性别,余额等信息:

create table customer (  c_id char(16) not null,  c_name char(20) ,  c_age integer ,  c_country varchar(20) ,  c_class char(10),  c_sex text,  c_balance numeric ); insert into customer values(1, 'tom', '20', 'China', '1', 'male', 300); insert into customer values(2, 'jack', '30', 'USA', '1', 'male', 100); insert into customer values(3, 'rose', '40', 'UK', '1', 'female', 200); insert into customer values(4, 'Frank', '60', 'GER', '1', 'male', 100); insert into customer values(5, 'Leon', '20', 'China', '2', 'male', 200); insert into customer values(6, 'Lucy', '20', 'China', '1', 'female', 500);

ROLLUP

本文开头的示例已经解释了,ROLLUP是在分组计算基础上增加了合计,从字面意思理解,就是从最小聚合级开始,聚合单位逐渐扩大,例如如下语句:

select c_country, c_class, sum(c_balance) from customer group by rollup(c_country, c_class) order by 1,2,3;  c_country |  c_class   | sum   -----------+------------+------  China     | 1          |  800  China     | 2          |  200  China     |            | 1000  GER       | 1          |  100  GER       |            |  100  UK        | 1          |  200  UK        |            |  200  USA       | 1          |  100  USA       |            |  100            |            | 1400 (10 rows)

该语句功能等价于如下:

select c_country, c_class, sum(c_balance) from customer group by c_country, c_class union all select c_country, null, sum(c_balance) from customer group by c_country union all select null, null, sum(c_balance) from customer order by 1,2,3;  c_country |  c_class   | sum   -----------+------------+------  China     | 1          |  800  China     | 2          |  200  China     |            | 1000  GER       | 1          |  100  GER       |            |  100  UK        | 1          |  200  UK        |            |  200  USA       | 1          |  100  USA       |            |  100            |            | 1400 (10 rows)

尝试理解一下

GROUP BY ROLLUP(A,B):

首先对(A,B)进行GROUP BY,然后对(A)进行GROUP BY,最后对全表进行GROUP BY操作

CUBE

CUBE从字面意思理解,就是各个维度的意思,也就是说全部组合,即聚合键中所有字段的组合的分组统计结果,例如如下语句:

select c_country, c_class, sum(c_balance) from customer group by cube(c_country, c_class) order by 1,2,3;  c_country |  c_class   | sum   -----------+------------+------  China     | 1          |  800  China     | 2          |  200  China     |            | 1000  GER       | 1          |  100  GER       |            |  100  UK        | 1          |  200  UK        |            |  200  USA       | 1          |  100  USA       |            |  100            | 1          | 1200            | 2          |  200            |            | 1400 (12 rows)

该语句功能等价于如下:

select c_country, c_class, sum(c_balance) from customer group by c_country, c_class union all select c_country, null, sum(c_balance) from customer group by c_country union all select null, null, sum(c_balance) from customer union all select NULL, c_class, sum(c_balance) from customer group by c_class order by 1,2,3;  c_country |  c_class   | sum   -----------+------------+------  China     | 1          |  800  China     | 2          |  200  China     |            | 1000  GER       | 1          |  100  GER       |            |  100  UK        | 1          |  200  UK        |            |  200  USA       | 1          |  100  USA       |            |  100            | 1          | 1200            | 2          |  200            |            | 1400 (12 rows)

理解一下

GROUP BY CUBE(A,B):

首先对(A,B)进行GROUP BY,然后依次对(A)、(B)进行GROUP BY,最后对全表进行GROUP BY操作。

GROUPING SETS

GROUPING SETS区别于ROLLUP和CUBE,并没有总体的合计功能,相当于从ROLLUP和CUBE的结果中提取出部分记录,例如如下语句:

select c_country, c_class, sum(c_balance) from customer group by grouping sets(c_country, c_class) order by 1,2,3;  c_country |  c_class   | sum   -----------+------------+------  China     |            | 1000  GER       |            |  100  UK        |            |  200  USA       |            |  100            | 1          | 1200            | 2          |  200 (6 rows)

该语句功能等价于如下:

select c_country, null, sum(c_balance) from customer group by c_country union all select null, c_class, sum(c_balance) from customer group by c_class order by 1,2,3;  c_country |  ?column?  | sum   -----------+------------+------  China     |            | 1000  GER       |            |  100  UK        |            |  200  USA       |            |  100            | 1          | 1200            | 2          |  200 (6 rows)

理解一下

GROUP BY GROUPING SETS(A,B):

分别对(B)、(A)进行GROUP BY计算

目前在GaussDB(DWS)中,OLAP函数的实现,会有排序(sort)操作,相比等价的union all操作,效率并不会有提升,后续会通过mixagg的支持来提升OLAP函数的执行效率,有兴趣的同学,可以explain打印一下计划,来看一下OLAP函数的执行流程。

商匡云商
Logo
注册新帐户
对比商品
  • 合计 (0)
对比
0
购物车